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Limit Probability Distributions for an 
Infinite-Order Phase Transition Model 
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The limiting probability distributions for the one-dimensional inhomogeneous 
spin system considered in a previous paper, which exhibits an infinite-order 
phase transition, are computed. It turns out that below the critical temperature 
or in the presence of an external magnetic field, the spins are completely 
polarized. 
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probability distributions. 

1. I N T R O D U C T I O N  

In ref. 1 we considered a one-dimensional inhomogeneous  Ising chain with 
very long-range potential and proved that in the absence of external 
magnetic field, an infinite-order phase transition occurs. The model  is a 
system of spins a i =  _+1 in an external magnetic field h>~0 with 
Hamil tonian  

~[ (a )~ ;h ]= -  ~ j la~j-h Y' a~ (1.1) 
l <~i<~j<~n l <~i<~n 

The probabil i ty distribution associated to ~ in the canonical  ensemble, 
defined on the discrete a-algebra ~ ,  = ~(X~),  X _  = { -  1, 1 ), is given by 

where 

pn,~,h(A)= ~ f ~  n,k,h E Am " i n ,  k, h 
Ikl ~< n ,k[ ~< n 

A 6 N ' ,  (1.2) 

fnA, k,h = ~ exp{ - - ] 3 ~ [ ( a ) n  ; h i }  (1.3) 
A,k 
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where ZA,k denotes the sum over all (a).  ~ A with ZT= ~a i=  k. The free 
energy of the model in the thermodynamic limit is given by (11 

~(fl, h ) ~ = - f l '  ]im n l log ~ x,, f n ,  k,h 
n ~ oo ]kl <<.n 

= max ( f l x 2 - � 8 9  
xE(--1,1) 

+(l +[xl)log[l + yr (1.41 

where y~: [0, 1 ] ~  [ - 1 ,  1] is the unique solution satisfying tY~[ < 1 for 
x <  1 of the equation (11 

( x -  y~) y~ =/~x(1 - y~) (1.51 

for x e [0, 1 ]. It is shown in ref. 1 that ~ (  -, 0) is a C oo function of fle N + 
and N-analytic in fl on N+\{fl~}, where tic= 1/4. 

In this paper we shall be interested in the behavior of the limiting 
probability distributions of the model. These are related to the large-n 
behavior of the A f.,k,h" By (1.3) and (1.1) we have 

f .Ak, h = exp(flhk ) f A, k,o (1.6 t 

and thus only the asymptotic behavior of the rA _ f A  needs to be J n , k  ~ n,k,O 
studied. In the following we shall identify the event A ~ ~J. with all the 
cylindrical events A xX ~ generated by it and denote nA=in f{nsN:  
A s N . } .  Let S . = { - n , - n + 2 , . . . , n - 2 ,  n} and A m = Z L m { n } x S . .  Let 
also f 2 ( S )  be the space of real-valued functions on the set X and let 
~ m :  f f 2 ( A m )  ~-~ ( 2 ( A m )  be given by 

(~,. O),.,~ = 4Jm,~ 

(.~m0).+ 1,k = exp ( - -  n - - ~ )  0.,k+ ~ (1.7) 

+exp fln---~ ~ , k  ~ for n>~m 

One obtains from (1.1) and (1.3) the fixed-point equation 

~n~fA = f A  (1.81 

which, viewed as a recursion relation, together with Eq. (1.3) written for 
n = nA, uniquely determines fA on AnA. 

Let s8 = a(0i~ ~ sSi). We shall need the following convergence result. 
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Proposition 1. 
limit exists: 
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For any fle ~ +, k e N, and A ~ r the following 

pp, o(A)= lira p.,~,o(A) (1.9) 
n ~ o o  

Then, by (1.8), 

Proof. Let AEOF=o~+ and for [jl ~<no 

C •  A =f.A,/ (1.10) 

fA= E CAf "A'J (1.11) 
j ~  S .  A 

where f.A,J is the solution of Eq. (1.8) with initial condition r.~,/ J n A , k  ~ (~;" 
Since 

Z f"~'J Y . f . , ~ =  Y, C,Y 2 f~A~i Z f~a~j (1.12) n,k  
k e S n  '~eSn [k[ ~<n [k[ ~<n / [ k l  ~< n A /  

it suffices to show that 

j.o 2s ~ r,A.J (1.13) T. = ~ f..,/+2 J n ,  k n ,k  
k ~ S  n ~ESn 

is an increasing function of n for any j >~ 0, j ~ S.~. 
Define N*: f2(A0) ~ D(Ao) by 

+ exp (n--~l) Tm+l.k+l 1 

for m~>0 and keSm. 

with 

1,k  1 

(1.14) 

Let nm ~ N, g~D(Sn,), and H'l(g) be the solution in ~2(Ao\A.I) of 

~*H'~(g) = H'~(g) (1.15a) 

HT,],k(g ) = g(k) (1.15b) 

and p~,o(A) extends to a probability measure on N. 
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By Eqs. (1.15) and (1.2)'it can be verified through (backward) induction 
that 

E s,,g n,k,6,-- E f,l,kg( ) (1.16) 
kESn k~Sn 

for any A e ~ .  and n in {nA ..... n l} .  
Let 

n,~. n,~ Then Hm,k=Hm,_k for k e S ,  and, as it can be easily shown inductively, 
n, ,a Hm, k is increasing in k >/0 for fixed m. Let 

- .A,S+2/ .A,S (1.17) 

Observe that by (1.16), definition (1.13) is consistent with definition (1.17) 
for 2 = 0  and also that, by Eqs. (1.15), s,o j,1 T ,  +~ = T,  . We prove that 

8--~ T~" ~> 0 (1.18) 

Taking 
1 H ''~ 7 y;" =tanh  fl k - l o  m+l,k+l~ m,k m - ~ + 2  g g2~+ 1,k_ l j  (1.19) 

~ (0, 1) for O < k ~ S m ,  and by = --Ym,-k for k in S. and ;" Ym& ~ 

and 
I 1 8 ;. 

0 ;. [_ l_ (y~_l ,g ) :  j 1-t-Y~,k-I ~2ym'k-~ 8~ Ym--1,~= 

1 0 ;. 

+ 1  ;" 82 ym'~ + l J - - Y m ,  k + l  
for (k, n)eAl\A,,.  

(1.22) 

we have Ym,k 
Eq. (1.15) 

{/~ k 1 1+~ } 
Y~m tanh + ~ log -- Ym,~ -- 1 (1.20) 

--l 'k= re(m-+ 1) 1 Y~,k+ 

for 0 < m ~< n i and k in S,, 1. Relation (1.18) follows now inductively since 

8 ;. , ~ ) z ] [  k + l  ( k + l )  
8-~Y,,,~=[1-tY;~,~ fl n-7--~ tanh f i2nl+l ] 

_flkn~+lltanh(fl2 k - l ) ]  (1.21) 
\ n l +  1 / J  
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2. B E H A V I O R  OF T H E  L I M I T I N G  
P R O B A B I L I T Y  D I S T R I B U T I O N S  

Due to the very slow decay of the potential and to the absence of 
translational invariance, the probability distributions show unusual 
features. For instance, for h > 0, the spins are completely polarized, in that 
sense that, with probability one, a,.= 1 for any i t  N, although the 
magnetization m & = l i m ~ ( 1 / n ) Y ~ 7 = l a i  is always in (0, 1) for f l ~ + ;  
explicitly, it is given by the solution of the equation (1) 

m = ya[ f l (m  + h)] (2.1) 

Also, limh ,~ o pa, h(a~= 1)=  1 for all i and /~>/~c, albeit the spontaneous 
magnetization is always less than 1. 

Let za: [ - 1 ,  1] ~-~(-1,  1) be the unique solution of (1.5) for /~</~ 
satisfying za(0 ) = 0  and z~(0)= � 8 9  1/2] [see ref. 1 for a detailed 
study of Eq. (1.5)]. The usual technique (2~ shows that za(. ) is a real 
analytic function in an open interval including [ -  1, 1]. 

Define Ha: [ - 1, 1 ] ~ ~ for/~ < / ~  by 

H e ( x  ) = fix 2 - �89 - x) log[1 - Za(x)] + (1 + x) log[-1 + za(x)] } - l o g  2 

(2.2) 
and 

~-~ dt H ; ( t ) I t  2 + 1 - 2tzB(t)]  - H; (O)  - H'~(t) 
Ea (x )  (2.3) 30 t -  zAt) 

We now state our main result. 

T h e o r e m  1. Let n~ N, ( a ) , ~ X  ~, a n d / ~ = n  -I  Y~7=1 ai. Then: 

(i) For fl</~c, 

pa, o({(o-)n }) = const n - pn, a,o({ (a)~ }) exp[ - n H a ( t ~  ) + Ea(/z)] [1 + (9(l/n)] 

(2.4) 

where constn is the normalizing constant. 

(ii) For/~ >//c, 

pa, o({(o-L}) = �89 - 1) (2.5) 

(iii) F o r h > 0 a n d / ~ e R + \ { / ~ c } ,  

Pa, h({(a), }) = 6(#--  1) (2.6) 

where 6(x )  is the Dirac measure at x. 
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Remark. We have some evidence (but not a proof) that Eqs. (2.5) 
and (2.6) are correct for/~ = / ~  also. 

We use the symbols (9 and ~ in the following sense: g,,~ = (9(n ~) iff 
sup.,k [g.,kn ~1 < oo and g.,k = o(n=) iff lim~ ~ ~ supk~ s. lg.,kn-=[ = O. 

The proof of this theorem is based on the asymptotic expansion of the 
statistical weights ~'J f . ,k .  Since the obtained expressions are cumbersome, 
whenever the computations are conducted in an obvious manner or have 
been already done in a similar situation, only the main steps will be 
presented. 

3. P R O O F  OF T H E  T H E O R E M  FOR fl>Bc 

Let 

_ fno,io /C(~+k)/z (3.1) gn, k - - J n + n o , k + i o /  n 

The factor C(~ +k~/2, which is the /~= 0 solution of Eq. (1.8), is introduced 
in order to isolate some singularities in the asymptotic expansion. We have 

5dg = g (3.2a) 

on A 0, where 5r (2 (A0)~  f2(Ao) is defined by (~~ gt)o,k = ~go, k and 

l [ ( l _ n _ ~ ) e x p ( _ / ~  k + i o  ) g t  k+l 
(r ~Or)n + l'k = 2 n + n o +  1 

k + i o  1 ) T . , k  1] (3.3) + (1 + n ~ )  exp (/~ n +no + 

Also, 

g0,k = 6k,0 (3.2b) 

g . . . .  = e x p ( ~ n - - ~ A ~ i j - l ~  (3.4) 
\ / j = l  

for e =  _+1, where A ~ = n o - a i o  . For the proof of the theorem at /?>~c,  
we shall find a positive function ~ such that log(g/g)= (9(1). The latter 
condition is satisfied in case for some e > 0 

~,+l,k = [1 + ( 9 ( n - l - ~ ) ] ( ~ ) n , k  (3.5) 

for all n, k e Ao. 
A few words on how to obtain ~ are in order. We consider here/~ >/~c; 

for/3 </~c the technique is similar and will not be repeated. In view of (1.4) 
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we should have for large n, g,,k ~ exp[nF~(k/n)], where F~ is related to the 
thermodynamic potential and is smooth for x~0 .  Taking g,,k= 
exp [nF~(k/n) ] ,,(1) 6",k, we obtain with the aid of Eqs. (1.8) and (3.1) a recur- 
sion relation for (~) g,,~ of the form 

.(~) + A . k  , . (1)  =~(1) (3.6) A n ,  k + 1 6 n , k + l  , l ~ n , k  1 ~ n + l , k  

In order to obtain minimal growth with n of supg~s" [log g(~Ik)[, the 
coefficients in (3.6) should satisfy the condition 

A,.k+l+A,,k_a = 1+~(1) 

Condition (3.7) leads to the following equation for F~: 

�89 - x ) e x p [ - f l x  + (x+ 1) F'~-F/~] 

+ 1(1 +x)exp[f ix  + ( x -  1) = 1 

(3.7) 

(3.8a) 

r~ (+  1)= 1 (3.8b) 

the domain of y~, i.e., on ( - ~ ,  1] with 

1 --  x y ~  + io y~  --  1 ~= H ~  (3.12) 
y ~ - - x  y ~ - - x  

This perturbative process could be (at least in principle) continued, but, in 
order to obtain thermodynamic information, a finite number of steps is suf- 
ficient. In our case, the first step is sufficient to obtain the free energy and 

the equation in x = k/n e ( - e~, 1 ), 

d t p  + _ x 2  + l - 2 x y  ~ d 2 F~O) +no 
dx 2(y~-  x) dx 2 

The function F~ ~ defined on 
~ > 0, by 

F~~ - ~ [  (1 - x) l~ 1 - yBI-x +(1 + x ) ' l o g ~ j l +  YB] (3.9) 

satisfies Eqs. (3.8a) on ( -e~ ,  1), F~~ 1, and, moreover, 

~(1-T-x)exp -T-flx+(x+_l)--d-xF(~~176 (3.10) 

For the next step we repeat the above construction in terms of ,,(1)A 6 n , k  
exp[q(k, n)] g~2) k. Assuming that q(., -) is smooth on some domain of the 
variables n, k (thought of as continuous variables) and neglecting some 
higher-order terms, we obtain for 

~b+(n, k/n)A=flA + log(n+ 1)+ t/(n, k) (3.11) 
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the second for the limit probability distributions for /3 >/~c, whereas for 
/3 </3~, some additional information on g(2) is needed. The perturbative n,k 

method should work for other models, too, provided a convenient 
asymptotic relationship among the relevant variables could be established. 

Returning to the proof, we have to define properly the functions 
obtained above, define g,,k on the whole Ao, and verify (3.5). 

It follows easily from the proof given in ref. 1 for the analyticity of Ye 
that Ye() is an analytic function in the complex variable x in a 
neighborhood of x = 1 and thus real analytic on ( - e  e, 1 + ee) for some 
positive ee' Since y}(1)= 1 + 2/3, F~~ and He(- ) given by (3.12) are also 
real analytic on the same interval. Let 

F~(x)=SF(~~ for x~ ( -~p,  l + e e )  
(3.13) 

otherwise 

and, for a = + 1, 

~ x Ii 0~o,,o( )= 

and 

where x = kin. 

k e m m a  3.1. 

d t { ~ t 2 + l - 2 t y e ( a t )  
t -  y~(~t) F/i(t) 

no[ l - -  tye(at)] + ko[y~(~ 
{7 

ye(at) - t ye(at) - t S 
-/3A ~ log(n + 1 ) (3.14) 

g,,,k= ~ exp[nFe(~x)+ ~o,  io(X)] (3.15) 
a - + l  

For/3>/3c and h = 0 ,  for some C1.2eN +, 

C1 gn, k < gn, k < C2 gn.k (3.16) 

This lemma is proved inductively, using Eq. (3.5). The proof of 
Eq. (3.5) is most easily performed in the following steps: 

1. The case k = +_n follows from (3.15), (3.14), (3.10b), and (3.4). 

2. For ak/ne(-et~,  1) the a =  1 and a =  - 1  terms in the sum (3.6) 
satisfy (3.5) [and then their sum fulfills (3.5) on ( - e e ,  ee) ], as can be 
checked using the series expansion of the exponent, the analyticity of the 
functions, and Eqs. (3.8)-(3.11) (see ref. 1 for details in a similar case). 

3. For k/n>ee/2,  the a--  - 1  term in Eq. (3.15) is exp(-lconst[  .n) 
times smaller than the a = 1 term and can thus be discarded in this region. 
Similarly, the a = 1 term can be dropped from the sum, for k/n < -ee/2. I 
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In conclusion, with 

~, ~~176 h = exp(/3hk ) C ,~(" -non~ + k - io)/2 

x ~ e x p I ( n - - n o ) F ~ ( a  
a = •  

we have 

(3.17) 

k - i o + O~,~o,io 
n - n o +  1 \ n - n o +  1 

no , io no, io c o n s t < f h  /~h < c o n s t '  (3.18) 

on Ao. 

no,  i0 no, i0 Homork. In fact, it can be shown, using estimates on f~,~,hff. ,k,h-- 
no,io no,io f .... h/~ .... h, much  in the same way in which (4.27) below is obtained,  that  

nO, i0 n0 ,  i0 __ lim f n, k, J f , , ,~ ,h -  1 
n ~ o o  

if kin ~ x ~ O. 
In view of (3.18) it follows, in a s t ra ightforward manner ,  that  

proving Theorem 1 for/3 > fie" 

4. THE L IMIT  PROBABIL ITY  D I S T R I B U T I O N S  FOR ~<l~c 

Let go = y~(0) > 1/2 and g: Ao ~ ~ + be given by 

~n,k = exp[nF~(k/n)  + ~,~(k, n)]  

with 

(4.1) 

1 

~:(k,  n) = ~  dx Wo(X) + Z P~(ak, n) (4.2) 
J n  g ~  o ' ~  q- I  

• dx Wo(X ) + dx w~(x) - fi(n o - aio) ~, j 1 
j = l  

W o ( X  ) = 1 ,, - 1  ~F~ ( x ) [ x  - y e ( x ) ]  [x  2 + 1 - 2xy~(x)]  (4.3) 

w~(x) = {no[1 - x y l 3 ( x ) ]  - aio[1 - y ~ ( x ) ] } [ x - - y B ( x ) ]  - I  (4.4) 
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and 

p~,(k, n)= {~'n-~'g~ + kn-g~ ~ for k > n  g~ 2/~ 

otherwise 
(4.5) 

Define also 

/1.,k = exp[ -nHe(k /n  ) + Ee(k/n ) + fl log n] (4.6) 

Then, the following estimates hold. 

L e m m a  4.1. (i) If c~ > 2 ( g 0 -  1/2)-~, then, for some 0e > 1, 

(5~ = [1 + O(n-ae)] ~,+ ~,k (4.7) 

(ii) 

( ~ * / ~ ) m . k  = [ 1  + ( 9 ( m  2 ) ]  fftm, k (4.8) 

The proof follows essentially the scheme of ref. 1 and uses again Eqs. (3.8)- 
(3.12). For the proof of (i), however, the following remarks are useful. For 
small positive el and large n, P~ [ ( 1 - P ~ ) ]  is negligible in the region 
Ik/nl <n g~ [Ikl >ng~ respectively]. Now, for ng~ Ik] <<.ng~ 
after the appropriate series expansions, the expression of ~-~(Se~)~ is 
given, to the required degree of accuracy, by a convex combination of the 
terms corresponding to P~ = 0 and P~ = t. 

It follows from (4.7) that for some C~,2E ~+,  

C1 ~ < g < C2 ~ (4.9) 

on A o and then by (4.1), (4.9), and (3.1), that for any a > 0  and A, A ' e  

( ,-.,,/z r176 
\ k~Sn  IkESn 

= lim ( ~  fA A' )  ~+ (4.10) 
n ~ oo ]k[ < n 1/2+~ [k] < n l/2+e 

Relation (3.9) is sufficient for completing the proof of Theorem l(iii), but 
in order to obtain estimates for the limits in (4.10) (h = 0 case), we need to 
relate the constants appearing in Eq. (4.9) to the initial conditions on fA  
[i.e., to (1.3) written for n = nA]. The recursion (3.2) is linear and thus the 
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study of its asymptotic regime alone cannot yield the needed relationship. 
We shall instead refer to (1.16) and note that 

,lira 2 f~i,0 2 f ~ f l  = lim (Hno,io()/Hnl,il(1)) (4.1l) 
k ~ S n  I k ~ S n  / n ~ o o  

and show that the limit on the rhs of (4.11) is equal to 

lira (H',',o,io(Bn)/Hnn~,il(ff]n)) (4.12) 

for which, as a consequence of Lemma 4.1(ii), /~.0,~0//~n~,~l is an estimate 
with the required degree of accuracy. Let 

Z.,k = g.,k/gn,~ (4.13) 

Using (3.2), One obtains a recursion relation for the Z. of the form 

Z.+ 1,k = �89 y .+  1,k)Z.,k+ 1 + �89 + f.+~,k)Zn, k_ 1[1 + C(n 1-~p)] 

for some positive t/~ and where 

k 
(1 - fi.+ 1.k) = I1 -- Y~ (n - - -~ ) ]  [1 

and 

(4.14) 

f i n , k +  1 - -  f in ,  k - -  1 =" Y f l  

L e m m a  4.2.  

+ C ( n  1)] (4.15) 

(4.16) 

lim lira sup I)G,k--~.,o]=0 (4.17) 

Since, as a consequence of Lemma 4.1(i), Z is uniformly bounded on 
Ao, it suffices to prove that Eq. (4.17) holds for the solution of the 
recursion 

2n+l ,k=�89  Yn, k + l + l ( l + Y n + l , k )  2,,,k 1 (4.18) 

with initial conditions 2.1 = Z.I, for all large enough nl. Indeed, in this 
assumption, since by (4.14) and (4.18), for some positive e B 

Z.,k = exp[(9(n~-~r Xn, k (4.19) 
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we have 

Taking 

IZ~,~ - Z~,ol ~ exp(const-  ni -~)  I~,k - 2~,o[ 

+ sup [~.,k] c o n s t ' .  n - ~  
lz, k 

in Eq. (4,18), we obtain 

Costin and Costin 

Let 

(4.20) 

Dn, k~=ng~ k+l--Zn, k l) (4.21) 

Dn+Lk=21[ + 1  n+lg0 +O(n--Z)][(l_?~+t,k+l)D,,k+, 

+ (1 + 5n+1,~-1) D . ,k -~ ]  (4.22) 

C~ = sup D., k (4.23) 
k ~  Sn 

By (4.16), 

(4.24) 

and since y'~(x)>1 gox on [0, 1], (1~ it follows that 

D.+L, < C.[1 + (9(n -1 ~) ]  (4.25) 

and thus D < const on A.,.  The  inequality D > - c o n s t  is obtained in the 
same manner  and thus 

IL, k -  2%ol < const ,  kn go (4.26) 

Summing up, we have, for large n, 

fno, io _ C (" - no + k - io) /2~.  n k  - -  n - n o  6 n - - n n , k - - i o ' ( Z n ~ b ~ O n L  Tn, k )  (4.27) 

with 

and 

sup ]~,k[ < oe (4.28) 
n,  k 

lira lim sup 17n, k[ = 0  (4.29) 
e ~ O  n ~ o o  ikl<ngO-~ 
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Using (4.t), (4.6), and (4.27)-(4.29) and the propert ies  of Eq. (l.5), it 
follows, in a s t ra ightforward manner ,  that  

n ~  ~ \ k a S n  l k ~ S n  

" no  i0 n l , i l  
, / z ~  ) 

"/1, il 

k e S n  I k 6 S n  

Relation (4.30), together  with (1.16) and Lemma4.1( i i ) ,  completes  the 
p roof  of Theorem 1. 
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